skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramsey, Philip"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Genetic rescue, specifically translocation to facilitate gene flow among populations and reduce the effects of inbreeding, is an increasingly used approach in conservation. However, this approach comes with trade‐offs, wherein gene flow may reduce fitness when populations have adaptive differentiation (i.e., outbreeding depression). A better understanding of the interaction between isolation, inbreeding, and adaptive divergence in key traits, such as life history traits, will help to inform genetic rescue efforts. Stream‐dwelling salmonids, such as the westslope cutthroat trout (Oncorhynchus lewisi; WCT), are well‐suited for examining these trade‐offs because they are increasingly isolated by habitat degradation, exhibit substantial variation in life history traits among populations, and include many species of conservation concern. However, few genomic studies have examined the potential trade‐offs in inbreeding versus outbreeding depression in salmonids. We used > 150,000 SNPs to examine genomic variation and inbreeding coefficients in 565 individuals across 25 WCT populations that differed in their isolation status and demographic histories. Analyses of runs of homozygosity revealed that several isolated WCT populations had “flatlined” having extremely low genetic variation and high inbreeding coefficients. Additionally, we conducted genome scans to identify potential outlier loci that could explain life history differences among 10 isolated populations. Genome scans identified one candidate genomic region that influenced maximum length and age‐1 to age‐2 growth. However, the limited number of candidate loci suggests that the life history traits examined may be driven by many genes of small effect or phenotypic plasticity. Although adaptive differentiation should be considered, the high inbreeding coefficients in several populations suggest that genetic rescue may benefit the most genetically depauperate WCT populations. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. null (Ed.)
  3. Abstract Recent declines in wild bee populations have led to increases in conservation actions and monitoring of bee communities. Pan traps are a commonly used sampling method for monitoring bee populations due to their efficiency and low cost. However, potential biases inherent in different sampling techniques may result in misleading characterizations of bee communities across space and time.In this paper, we examined how bee communities sampled using pan traps and aerial nets changed seasonally, and if they were affected by the availability of floral resources.We found strong seasonal changes in the abundance, but not the richness, of bees captured in pan traps. Notably, we captured the fewest bees during weeks in spring when most flowering plant species were in bloom, suggesting that floral resource availability influences pan trap captures. We also compared patterns of bee abundance in pan traps to those captured by aerial netting. Bee richness in pans and nets was positively correlated, but relative abundances in pan and net samples were dominated by different bee genera. Furthermore, most genera decreased in pans with increasing floral richness, but patterns were mixed for nets. When using presence/absence data, rather than abundance, community composition was more similar between netted and pan‐trapped bee communities and changed less substantially across the floral richness gradient.Overall, these differences led to sampling substantially different bee community compositions in pan traps versus nets, especially when using abundance‐based methods to characterize the bee community. By examining multiple years of intensive seasonal sampling of plant and bee communities, we document potential pitfalls with methods commonly used to sample bee communities.We suggest that pan trapping and aerial netting provide similar estimates of bee species richness and community composition when using presence/absence data, but that practitioners should interpret pan‐trapped bee abundance data with caution especially when comparing bee communities between sites where plant communities may differ. 
    more » « less